Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available April 17, 2026
-
Free, publicly-accessible full text available March 20, 2026
-
Free, publicly-accessible full text available April 1, 2026
-
Free, publicly-accessible full text available March 1, 2026
-
Free, publicly-accessible full text available February 6, 2026
-
Inferring underlying microscopic dynamics from low-dimensional experimental signals is a central problem in physics, chemistry, and biology. As a trade-off between molecular complexity and the low-dimensional nature of experimental data, mesoscopic descriptions such as the Markovian master equation are commonly used. The states in such descriptions usually include multiple microscopic states, and the ensuing coarse-grained dynamics are generally non-Markovian. It is frequently assumed that such dynamics can nevertheless be described as a Markov process because of the timescale separation between slow transitions from one observed coarse state to another and the fast interconversion within such states. Here, we use a simple model of a molecular motor with unobserved internal states to highlight that (1) dissipation estimated from the observed coarse dynamics may significantly underestimate microscopic dissipation even in the presence of timescale separation and even when mesoscopic states do not contain dissipative cycles and (2) timescale separation is not necessarily required for the Markov approximation to give the exact entropy production, provided that certain constraints on the microscopic rates are satisfied. When the Markov approximation is inadequate, we discuss whether including memory effects can improve the estimate. Surprisingly, when we do so in a “model-free” way by computing the Kullback–Leibler divergence between the observed probability distributions of forward trajectories and their time reverses, this leads to poorer estimates of entropy production. Finally, we argue that alternative approaches, such as hidden Markov models, may uncover the dissipative nature of the microscopic dynamics even when the observed coarse trajectories are completely time-reversible.more » « lessFree, publicly-accessible full text available January 21, 2026
-
Free, publicly-accessible full text available December 23, 2025
-
Morel, Penelope Anne (Ed.)IntroductionT-cell receptors (TCRs) play a critical role in the immune response by recognizing specific ligand peptides presented by major histocompatibility complex (MHC) molecules. Accurate prediction of peptide binding to TCRs is essential for advancing immunotherapy, vaccine design, and understanding mechanisms of autoimmune disorders. MethodsThis study presents a theoretical approach that explores the impact of feature selection techniques on enhancing the predictive accuracy of peptide binding models tailored for specific TCRs. To evaluate our approach across different TCR systems, we utilized a dataset that includes peptide libraries tested against three distinct murine TCRs. A broad range of physicochemical properties, including amino acid composition, dipeptide composition, and tripeptide features, were integrated into the machine learning-based feature selection framework to identify key properties contributing to binding affinity. ResultsOur analysis reveals that leveraging optimized feature subsets not only simplifies the model complexity but also enhances predictive performance, enabling more precise identification of TCR peptide interactions. The results of our feature selection method are consistent with findings from hybrid approaches that utilize both sequence and structural data as input as well as experimental data. DiscussionOur theoretical approach highlights the role of feature selection in peptide-TCR interactions, providing a quantitative tool for uncovering the molecular mechanisms of the T-cell response and assisting in the design of more advanced targeted therapeutics.more » « lessFree, publicly-accessible full text available January 23, 2026
-
Free, publicly-accessible full text available December 19, 2025
-
Free, publicly-accessible full text available December 1, 2025
An official website of the United States government
